

NCASI West Coast Regional Meeting Vancouver, September 2011

David Smith, Oregon State University

- » Forest biomass is being recovered and processed from harvest and thinning sites for industrial and institutional fuel
- » Material variability and minimal processing leads to performance issues

» Few quality specifications or conformance procedures currently place

Current Market Practice

- » Particle size distribution
 - > Handling
- » Percent dry (moisture content)
 - > Market value
- » Ash and contaminant content
 - > Boiler & fuel value impacts
- » Trace elements
 - > Ash fusion temperature, corrosives
- » Bulk Density
 - > Trucking, handling
- » Heating value
 - > Fairly consistent for wood and bark

» Material source

- > Forest derived, mill residue, urban wood
- > Certified forest, sustainable
- > Ag wastes

» Processing method

- > Grinder, chipper, stationary hog
- > Screened, washed, ADS
- > Dried

Critical Characteristics

» Industrial boiler operator:

- > 5-inch minus material, Free of non combustibles
- > Variable price scale related to moisture content

» Industrial boiler operator:

- > Clean, uniform material, Free of foreign substances, Minimal fines
- > 30% to 50% moisture content

» Institutional operator:

- > 90% by weight 3-inch minus in all directions
- > Less than 25% by weight pass through a ¼" screen
- > Less than 5% inorganic material
- > 20% to 50% moisture content
- > Supplier liable for removal of non-compliant materials

Typical fuel specifications

- » Crowded Lodgepole pine
- » <6", whole tree</p>
- » 3 mo. after cutting
- » Horizontal grinder
- » Grapple & bucket

Biomass from pine thinning

» Doug fir logging slash

» Tops, branches, junk wood

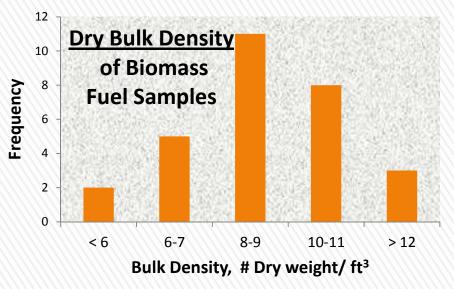
» Shovel logged to landing

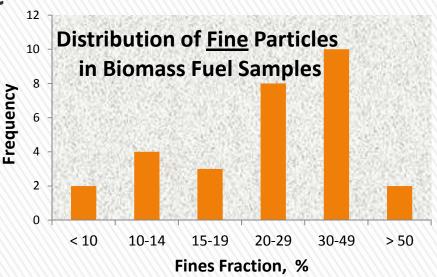
» < 1 mo. after harvest</p>

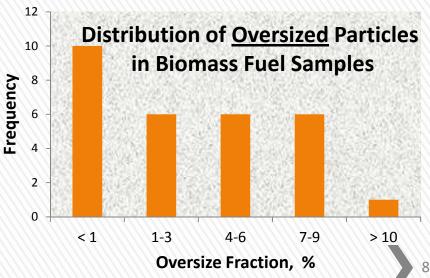
» Mobil chipper

Biomass from harvest residue

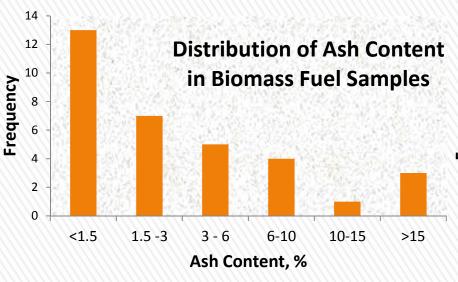
- » Doug fir logging slash
- » Tops, branches, junk wood
- » Collected & forwarded to roadside piles
- » 1+ yr. after harvest
- » Horizontal grinder,4" screen

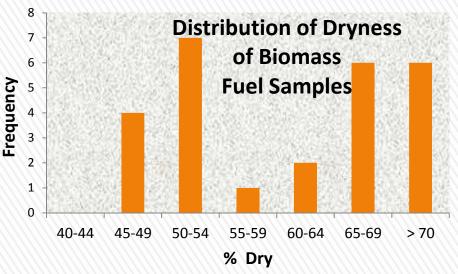


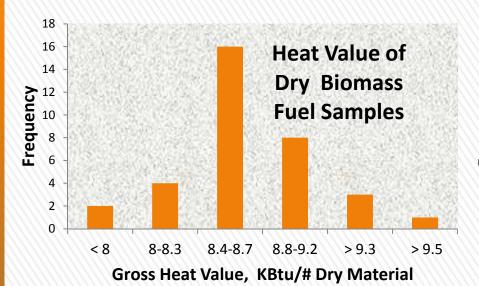


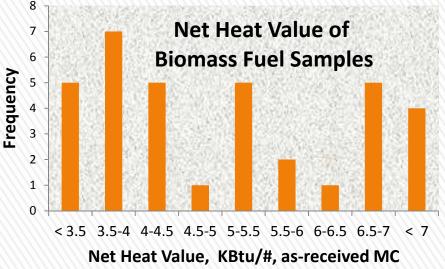

Biomass from harvest residue

» OSU lab equipped to evaluate fuel quality


» Tested over 50 samples







High variability

High variability

Wood Fuel MC (wet basis)	MMBTU per green ton, net	MMBtu per bdt, net	Net heat loss due to fuel moisture, %	Relative fuel value compared to \$50/bdt @ 30% mc	Fuel cost, \$/MMBtu
0	13.8	13.8	0	53.67	3.89
8	12.5	13.6	1.5	52.84	3.89
20	10.6	13.3	3.7	51.53	3.89
30	9.0	12.9	6.5	50.00	3.89
40	7.3	12.2	11.6	47.31	3.89
50	5.7	11.4	17.4	44.33	3.89
60	4.1	10.3	25.4	39.86	3.89

Net values assume moisture impacts on normal industrial boiler efficiencies Source: USFS fuel value calculator

Impact of moisture content on net heat value

- » Biomass fuels are highly variable
 - > Quality affects performance
- » Users have different requirements
 - > Different types of industrial boilers
 - > Institutional thermal systems
- » Provide basis for supplier QC/QA
 - > Consistent products
- » Allows competitive free market to function
 - > Spot Market
- » Public Acceptance
 - > Certified fuel grades
 - > Emission permitting

Why are formal specs needed?

- » List of realistic quality limits
- » Reference methods for measuring quality> Sampling is vital!
- » Regular testing on agreed-upon lot size
- » Clear penalties and responsibilities for disposition of non-complying material
- » Pricing that reflects supplier's processing requirements to meet quality limits

Elements of a fuel quality specification

» Wood Chip Heating Fuel Specification

- > Issued by Biomass Energy Resource Center
- > Grade A: Paper Grade Chip (high quality)
- > Grade B: Bole Chip (medium quality)
- > Grade C: Whole Tree Chip (low quality)
- > Grade D: Urban derived Wood Fuel (lowest quality)

What's out there?

- » Wood Chip Heating Fuel Specification
- » Grade B: Bole Chips

PARAMETER	MAXIMUM	TYPICAL	MINIMUM
Particle Size			
Dimensions (length x width x thickness)	3.5" × 3.5" × 0.75"	2" × 2" × 0.25"	I" × 0.75" × 0.12"
Coarse materials (% retained by 3" mesh screen)	15%	10%	No minimum
Main materials (% retained by ½" mesh screen)	100%	90%	80%
Fines materials (% passed through ½" mesh screen)	20%	10%	No minimum
Ash Content			
Ash content by weight	3%	1.5%	No minimum
Alkali content (lbs/MMBtu)	0.5	0.3	No minimum
Moisture Content			
Moisture content by weight	50%	42%	25%
Energy Content			
At given moisture content	50%	42%	25%
Btu/green pound	4,125	4,785	6,600
Contaminants (rocks, ice, dirt & debris)	None	None	No minimum

What's out there?

» CEN/TS 14961

- > Developed from individual EU country standards
- > Flexible system, solid biofuels specified by:
 - + Origin (woody, herbaceous, fruit, mixed)
 - + Source (whole trees, logging residue, stem wood, mill residue, used wood)
 - + Trade form (pellets, chips, hog fuel)
 - + Properties (particles size distribution, moisture, ash)

» ISO Technical Committee 238

- > Bringing in Asia, US and other non-European standards
- > US represented by ASABE (American Society of Agricultural and Biological Engineers)

What's out there?

Table 8 —Specification of properties for hog fuel

	Master table					
	Origin:		Woody biomass (1)			
		to 6.1 and Table 1.				
	Traded Form		Hog fuel			
	Dimensions (mm) ^a					
		Main fraction > 80% of weight	Fine fraction < 5 % of weight	Coarse fraction, max. length of a particle, mm < 1 % of weight		
	P45	3,15 mm ≤ P ≤ 45 mm	< 1 mm	> 63 mm		
	P63	3,15 mm ≤ P ≤ 63 mm	< 1 mm	> 100 mm		
	P100	3,15 mm ≤ P ≤ 100 mm	< 1 mm	> 200 mm		
	P300	3,15 mm ≤ P ≤ 300 mm	< 1 mm	> 400 mm		
	Moisture (w-% as received)					
	M20	≤ 20 %	Dried			
ø	M30	≤ 30 %	Suitable for storage			
tiv	M40	≤ 40 %	Limited for storage			
G	M55	≤ 55 %				
Ε	M65	≤ 65 %				
o r	Ash (w-% of dry basis)					
z	A0.7	≤ 0,7 %				
	A1.5	≤ 1,5 %				
	A3.0	≤ 3,0 %				
	A6.0	≤ 6,0 %				
	A10.0	≤ 10,0 %				

From CEN/TS 14961

- » OSU providing service to industry
 - > Offer sampling and analysis services
 - > Support development of individual standards
 - > Make test data available for public use
- » Encourage standardized testing protocols
 - > Adopt ASTM, TAPPI, other methods
- » Encourage <u>performance standards</u> and quality specifications
 - > Pattern off of CEN/TS 14961: "free classification" system
 - > Move toward a National Standard (ANSI)

Next steps

David Smith

Renewable Materials

Wood Science and Engineering

Oregon State University

119 Richardson Hall

Corvallis, OR 97331

(541) 737-8506

david.smith@oregonstate.edu

www.renewablematerials.oregonstate.edu

Thank you!